

and frozen resources

Hydrogen

at poles

Titanium, Oxygen, Helium

Main Objectives

Design a Lunar Colony that will be cost-effective, durable,

and expandable. It will provide the foundation for a

permanent Lunar Colony.

Benefits

The Moon's thin atmosphere allows for pristine conditions for

research and projects that would be contaminated by Earth's

atmosphere. Certain minerals, such as natural titanium and

silicon, are rare on earth but common on the Moon, making

them within easy reach for mining. Finally, the Moon can be a

jump-off point for the rest of the solar system.

Background Information

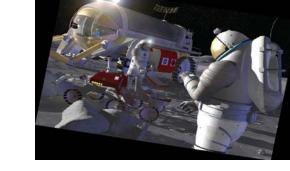
Geography: Radioactive equator, poles with constant sunlight

Atmosphere: Very thin layer of 90% Nitrogen, Trace Helium,

Temperature Range: -150° to 100° C at equator, - 50° to 50° C

Soil: Mostly basalt type rocks, composed of Iron, Silicon,

Expandable Deployed Lunar Base for the Purpose of the Establishment of a Lunar Colony


By: Jason Jayanty and Christopher Bussetti Mentors: Rebecca Vecere, Dr. Siva Thangam, Professor Joseph Miles

STEVENS Institute of Technology

Transportation

A moon rover or other vehicle would be used to travel. There would either be an External design or an Internal design. A landing craft would be used to bring initial supplies

Internal Design w /

Pressurized Cabin

Supplies

	First Aid
S	

MRE' **Natural Produce**

Food

Air Recycler / Tanks Plant-Generated Water

Recycled Generated on site Equipment Mining Tools Telescopes

> Computers Suits

Fuel Hydrocarbon Fuel

Material Cost

Material	%	Weight (lbs)	Cost	Price/lb
Iridium	30%	600	\$300,000	\$500
Titanium	20%	400	\$40,000	\$100
Inconel 625	15%	300	\$6000	\$20
Stainless Steel	15%	300	\$2000	\$7
Tungsten	10%	200	\$10,000	\$50
Demron	5%	100	\$60000	\$600
Fiberglass Insulator	5%	100	\$800	\$8

Timeline

-Real-World Environment tests

-Support people, supplies

Computers	\$50,000 \$45,000
Food	\$15,000 \$295,000
Telescope Mining Tools	\$10,000
First Aid	\$10,000
Air Recycler	\$2,000
Vehicle	\$68,500

One year for building

Few years for testing

Transport to Moon

Additions / Build-ons

Expansion / Deployment

Total: \$855,800*

*Not including fuel/transportation fees (\$20 million) and assembly fees (\$25-30

2007

2008

2009

2010

2011

2012

2013

A Lunar base can be established within the given time frame specified above.

Conclusion

Supply trips

One month apart

Bring an additional section each trip Slow down as colony becomes self-sufficient

Site Chosen

Criteria	0/0	N - Pole	N - Pole Weighted	S - Pole	S - Pole Weighted	Equator Near Side	Near Side Weighted	Equator Far Side	Far Side Weighted
Areas of Constant Light	20	5	100	2	40	2	40	1	20
Radiation Exposure	20	3	60	3	60	4	80	1	20
Resource Availability	15	3	45	5	75	2	30	2	30
Radio Contact	15	4	60	4	60	5	75	1	15
Ease of Transport	15	4	60	4	60	3	45	1	15
Placement of Installation	15	3	45	3	45	4	60	3	45
Total	400	22	270	21	0.10	20	222	Q	4.4

Material Evaluation

		Tita	anium	Tur	ngsten		igsten rbide	Inconel 625		Demron		Stainless Steel	
Criteria	%	Score	Wght'd Score	Score	Wght'd Score	Score	Wght'd Score	Score	Wght'd Score	Score	Wght' d Score	Score	Wght'd Score
Material Weight	20	9	180	7	140	7	140	6	120	10	200	8	160
Reliability	20	9	180	9	180	9	180	7	140	10	200	9	180
Cost	20	5	100	8	160	9	180	8	160	7	140	7	140
Melting Point	20	9	180	10	200	9	180	8	160	5	100	8	160
Insulation	20	8	160	9	180	9	180	9	180	10	200	9	180
Total	10	40		43		43		39					
	0		800		860		860		760	42	840	41	820

Energy

Solar Power with Plexiglas covering to protect from radiation

Nuclear Fusion Reactor using Helium present in Lunar Soil

Rechargeable battery system to power station during nights, recharged during day

Criteria		Solar	Solar Weighted	Fusion	Fusion Weighted	Battery	Battery Weighted
Availability of Fuel	20	3	60	5	100	2	40
Expected Cost and Benefits	20	5	200	4	80	3	60
Radiation Exposure	20	5	100	3	60	5	100
Size	15	4	60	4	60	2	30
Weight	15	3	45	2	30	3	45
Ease of Transport	10	3	30	4	40	2	20
Total	100	23	390	22	375	17	295

Energy Comparison

The size of this Stationary design will be two 35' sections for living quarters, and one 15 foot section for observations.

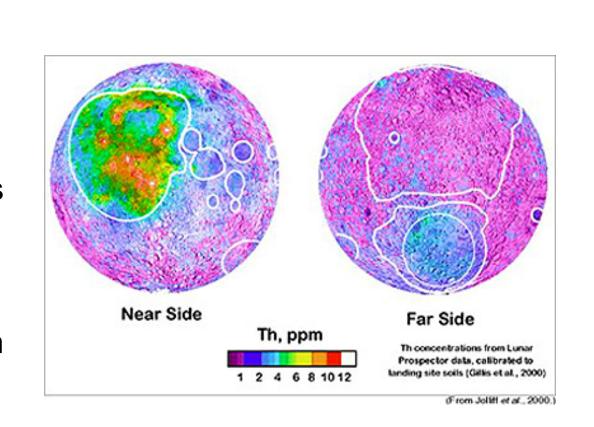
Colony Structure

The stationary design will cost a lot, but it will last a long time

Materials:

- •Iridium 30%
- •Titanium 20%
- •Inconel 625 20%
- •Tungsten 10%
- •Demron 5%

Goddard Space Flight Center Sponsors:


National Aeronautics and Space Administration (NASA) NASA Goddard Space Flight Center (GSFC) NASA Goddard Institute for Space Studies (GISS) NASA New York City Research Initiative (NYCRI)

Contributors:

Dr. Siva Thangam, Professor Joseph Miles Rebecca Vecere Jason Jayanty, Christopher Bussetti

Human Considerations

Humans can stay on the Moon with the proper equipment, but cannot stay for a long time until plenty of observations are taken. Bone loss of 39% over long periods can occur. Lung Cancer and Cardiovascular problems can occur from the ever-present and intrusive lunar dust. Precautions to avoid contact with radiation must also be taken.

